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Abstract

We consider the stationary Navier-Stokes equations in the case where both
the partial differential equations and boundary conditions are inhomogeneous.
Under certain conditions on the data, we prove the existence and uniqueness of
the solution of a weak formulation of the equations. Next, a conforming mixed
finite element method is presented and optimal estimates for the error of the
approximate solution are provided. In addition, the convergence properties of
iterative methods for the solution of the discrete'non1inear algebraic systems
resulting from the finite element algorithm are analyzed. Numerical examples,

using an efficient choice of finite element spaces, are also provided.
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1. INTRODUCTION

The Navier-Stokes equations, which describe the motions of viscous
incompressible fluids, have been the object of considerable research. Some
studies have been directed at improving our understanding of various properties
of the solutions of these equations, e.g. existence, uniqueness and regularity.
Most of the available mathematical results concerning such properties are
collected in [1], [2], [3] and [4]. Other studies have considered the approxi-
mate solution of the Navier-Stokes equations. Finite element methods for
generating such approximations have, especially in recent years, received much
attention, both from theoretical and computational viewpoints. See, e.g. [3],
(41, [5] and (6].

The analysis of finite element methods for the approximate solution of the
stationary Navier-Stokes equations may be viewed as having three components.
The first consists of assuming that the finite element subspaces satisfy certain
stability and continuity conditions, from which one then deduces estimates for
the deviation of the approximate solution from the true solution. The second
component then requires us to show that particular finite element subspaces, or
classes of subspaces, satisfy the assumed stabilify and continuity conditions.
The final component then requires one to study the computational efficiency of
implementations of given finite element methods, in particular as they relate to
the solution of the discrete set of nonlinear equations. In this work we are
concerned mainly with the first component and somewhat with the third. As will
be seen below, the only conditiohs which need to be verified for a given finite
. element discretization involve the weak form of the continuity equation. Fortu-
nately, these conditions are identical to those which arise in the context of
the linear Stokes equations and, for many different finite element subspaces,

have been successfully analyzed. See, e.g. [5], [71, [8], [91, [101, [11] and




t12]. In particular, we point out that [10] and t]Z] consider elements
which, in conjunction with the error estimates derived below, yield optimally
accurate velocities and pressures, and which also deal with the very efficient
element used to generate the example computations given in this work.

In this work we consider conforming mixed finite element methods for the
approximate solution of the inhomogeneous stationary Navier-Stokes equations

2 or ]R3. These equations are given by (2.1)-(2.3)

in bounded regions in R
below. We approximate only when the Navier-Stokes equations possess a unique
solution. By inhomogeneous we mean that the momentum equation (2.1) contains
a body force, that the boundary condition (2.3) is inhomogeneous and that the
continuity equation (2.2) contains a source term. The first of these is in-
cluded in previous analyses and for internal flows, i.e. flows in bounded regions,
is often assumed to vanish or, at most, to be the constant gravitational
acceleration. The second of these, namely the inhomogeneous boundary condition,
is crucial in internal flows since they are invariably driven by such conditions.
This is true both for fictitious, but popular, flows such as the driven cavity,
as well as for real internal flows such as those found in ducts which are driven
by inflows and outflows. The analysis of such flows is the main concern of this
paper. The inhomogeneity in the continuity equation (2.2) requires some comment
since, strictly speaking, one cannot have mass sources in incompressible flow.
Indeed, the presence of such a source contradicts the very definition of an in-
compressible flow. We include this inhomogeneity here because, in practice, it
is often used in spite of the above inconsistency, e.qg. [3] in the context of
_ Stokes flow, because it is often artificially introduced when simplifying
boundary conditions, and because it poses no substantial mathematical difficulty.
In typical problems, .one may be interested in the flow field itself or,

on the other hand, some functional of the velocity or pressure. For example, in
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ocean circulation problems, 6ne is mainly intefested in the flow field itself,
and thus the L?-norm is a physica11y interesting norm in which to measure

the velocity errors. In other applications, e.g. aerodynamics and duct flows,
one may be interested in the pressure or in the derivatives of the velocity since
these determine the pressure and viscous fcrces, respectively, on bodies or
walls. In these cases, the tﬂ-norm of the velocity error and the L2-norm

of the pressure error are of physical interest. (These and other notations are
defined below.) We choose not to use the "eyeball norm" wherein computational
results on-a fixed grid are plotted and the reader is subsequently asked to
agree that the resulting picture is "reasonable". This process can and often
is very misleading in the sense that "reasonable" pictures can contain large

errors in norms such as the L2

and H]-norms. For example, it is relatively
- easy to generate solutions to the driven cavity problem which display global
vortical features that render any picture of the computed flow as being
“reasonable” in appearance, while the computed solution itself may be grossly
inaccurate in any precise measure of the error.

In the remainder of this section we estab]ishithe notation used in the
subsequent sections. 1In Section'Z, we present results concerning the exact
solution of a particular weak formulation of the stationary Navier-Stokes
equations. We give details only when the result 1is a substantial departure,
usually due to the inhomogeneous boundary condition, from known results. In
Section 3, we present a finite element algorithm for the approximate solution
of our weak problem and p;esent estimates for the error; We also discuss
~ various algorithms for solving the discrete system of algebraic equations which
result from the application of the finite element algorithm. Finally, in Section

4, we give some numerical.results, mainly with the goal of illustrating the

analytical results of Section 3.




1.1 - Notation

Throughout this work o will denote a bounded domain in ‘RZ or IR3
with a Lipschitz continuous boundary T. The unit outer normal to © will
be denoted by n. Hr(n), for r > 0 an integer, denotes the Sobolev space
of real valued functions with square integrable derivatives of order up to
r, equipped with the usual norm. See [13]. We will denote H°(Q) by LZ(Q).
ﬂr(Q) and L?(n) will denote the spaces of vector valued functions each of
whose n components, n = 2 or 3, belongs to H'(q) and LZ(Q), respectively.
We also define, in the usual manner, the Sobolev spaces Hr(Q) for r< 0O
and the trace spaces H3(r) of functions defined on the boundary. Again, see

[13] for details. Finally, we define the constrained spaces

(@) = {ve ﬂ?(n): v=0 on 1}

Thus Lg(n) consists of LZ(Q) functions with zero mean over <.

We define the L2 inner products
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Here f and g are scalar functions, u and v are vector valued
functions and o and <t are tensor functions. »The colon will denote the
scalar product of the two tensors on each side of it. Repeated indices,
unless otherwise noted, imply summation over 1,...,n, where n = 2 or 3.

For functions v e ﬂl(@), we will use the norm

[I_\dl% = J vyv: vvde = {Vv, vV >
Q

while for functions v etﬂ(ﬁ), we will use the norm

le||12 = (L, D+ CV,Y 0.

We use the same notation for both norms; which one is actually being used in
a particular situation will be clear from the context.
Boundary norms will be denoted by, e.qg. ||-|l]/2 - Whenever the T

is omitted, the norm is one for functions defined over @.

2. THE INHOMOGENEOUS STATIONARY NAVIER-STOKES EQUATIONS

2.1 - Reduction to a Homogeneous Problem

The Navier-Stokes equations for the velocity u and pressure p are

given by

-vAu + u-grad u + grad p

1
I~

divu in @

1)
0

in @ : (2.1)

(2.2)

u=g on T (2.3)



where v is the constant inverse Reynolds number and fe 5'1(9), ge L(Z)(s'z)

and qe ﬁ]/z(r) are given functions such that

Jgdn = jg-p_dr=0. (2.4)
! .

The weak formulation of (2.1)-(2.4) which we consider is to seek ue ﬂ] (2)

and pe Ls(sz) such that (2.3) is satisfied and

: 1 |
a,(u,v) + a;(u,u,v) + by,p) = <(fv> ¥ veH (o) (2.5)
blu) = <gw> ¥ v e Li(a) (2.6)
where
¢
a (u,v) = \:Jgrady_:grad ldQ-%J gu-vde, (2.7)
Q Q
1 (
a1(w,g,V) =7 J w-grad u-vda - ] w- grad l-y_dszs, : (2.8)
Q Q
and
b(v,p) = -I vdivvde. | (2.9)
! ,

We note that although the test function v in (2.6) is in Lg(sz), (2.6)
actually holds for all functions vy € LZ(Q) because of (2.4).

The motivation for choosing the particular weak formulation (2.5) is |
twofo]d.‘ First, we note 'that if (2.2) holds, then by the divergence theorem

we have, for u e 51(9) and v e ﬂl(n), that (2.5) is equivalent to




vJ grad u :grad vdQ +J usgrad u-vda + b(v,p) = <fydDV ve ﬂl(n). (2.10)
.Q Q - I .

This is the weak form of (2.1) one would arrive at from a standard Galerkin
procedure applied to (2.1). Second, it is obvious from (2.8) that the tri-

Tinear form a1(- ,*»+) satisfies the skew-symmetric properties

a](ﬂ,g,x) = -a](w,v,_q) V u,v,we ﬂl(a) ‘ (2.11)

aj(w,u,u) = 0 V uwe __](Q). (2.12}
on thé other‘. hand, the trilinear form

5-](_\1,2,!) z J w-grad u-vde - (2.13)

appearing in (2.10) satisfies (2:11).and (2.12) only when u,v,w e H1(s2)
with w divergence free and at least one of u,v,w € l_il(n). Indeed, for such

u,v,W we have, from (2.8) and (2.13)

ay(w,u,v) = ay{w,u,v). (2.14)
‘The fact that the properties (2.11) and (2.12) hold for the trilinear form

(2.8) on all of ﬁ](n) will be useful in the subsequent analyses.

We wish to reduce the problem (2.3), (2.5) and (2.6) into one for which

(2.3) and (2.6) become homogeneous. To this end we write

U=wW+z+g, ' | (2.15)




where gq, satisfies

g, e HHR), . Taoand blg¥) =0 Yye 12(a), (2.16)

and w satisfies

WEe HZ,(Q), b(w.p) = -<gp> Y pe Lg(n). (2.17)

In the sequel, g, will be required to satisfy an additional property,
which we consider below. ‘

If we substitute (2.15) into (2.3), (2.5) and (2.6) and use (2.16) and
(2.17), we are led to the fo]1owihg problem for z and p: seek ze ﬂl(ﬂ)

and pe Lg(n) such that

a,(z,¥) + a;(z,2,9) + a;(w+a,.2z,¥) + a;(z.w+a,.v)

+blv,p) =<f,v > - a (wig,,v) - a;(wha,,wig,,y) Yye ﬂl(n), (2.18)

b(z,y) = 0 Vve Lg(sz). (2.19)

We remark that the decomposition (2.15) need not be explicitly used in
computations, but rather u and p can be obtained directly from discreti-
zations of (2.3), (2.5) and (2.6). In particular, approximations to the

- functions w and g, need not be explicitly computed.

2.2 - Continuity and Stability Propertfes

We now list the continuity and stability conditions on the forms ao(-,- ’




-

a](o,-,- and b(-,-) which will be needed to prove the existence and
uniqueness of a solution to (2.3), (2.5) and (2.6). We define the subspaces

Z and W by

!

1 _
Z=z{ze go(n): b{zw) =0 Vvye Lg(n)}

and

L

W=1

1

where the orthogonality is in ﬂl(n).

It is easily seen that
bCen] <ALl el Yyed@, veld). o (220

Here n = 2 or 3 refers to the number of space dimensions. We note that
(2.20) implies that I is a closed subspace of H.(2) and thus H(2) = Z@W.

In additidn we need the stability preoperties

sup blw,o) > vllully vwel (2.21)
Hull,=1 , |

weLg(n)

and

Sup blw,) > vilell, VYve 12(0) (2.22)
ll!”_ll'l:]

wew

3

where v,y > 0. These properties are established in [14].

From (2.8) and (2.13) we have that



a] (_V_"_s_llal) .'_" % {5] (!’!’l) - 5] (ﬂ,_\{_,!)} .

It is known [4] that, with N> 0 and n = 2 or 3,

13y (wous )1 < NTully Tlvlly Huwlly v g,vaw e H(o).
Therefore, from (2.23), we have that
laglww)| < Mlully Hylly Hull, ¥ v e 8'(0)

as well,

Using Holder's inequality, we have that

jgu-Wdﬂj_N-l lal , Ivi| »» no sum over i.
a T AT e

Since for n=2o0r 3 and © bounded, H1(Q) is continuously imbedded in

1

L4, (2.25) implies that for all uveH(r) and ge Lg(n),

1
gu; v €L (2)

and

| sugvydal < cliully 11wl sl
Q

where there is no sum over 1. Therefore, for some M > 0,

| swvanl < amlulyy 1wl lll, v wwedl@, ociZ@.
) _

10

(2.23)

(2.24)

(2.25)

(2.26)




1
It is easily established that

|| orad ugrad vaal < flully Hlvlly ¥ wy e #'(a)
Q

and

. 2 1
Jgradg.gradgdﬂz Hg]l] Vgeﬂo(n).
Q
Combining these with (2.7) and (2.26) easily leads to
2 1
a (uu) > (v - Mgl{ MIufly ¥ ueH(e) (2.27)

and

laglu)l < (v + gl Dlul 1y Tyl Yuyed@. (228

The continuity and stability properties which will be used in the sequel

are given by (2.20), (2.21), (2.22), (2.24), (2.27) and (2.28).

2.3 - Existence, Uniqueness and Regularity

We first estab]ish;the/existence of a solution of the problem (2.3),
(2.5) and (2.6). We shall do so by showing the existence of solutions g,,
w of (2.16), (2.17), respectively, and then showing the existence of a
solution (z,p) of the problem (2.18), (2.19). Then, by (2.15), we will

~ have shown the existence of a solution (u,p) of (2.3), (2.5) and (2.6).

LEMMA 2.1 - Given gq € ﬂ}/z(r) satisfying 12.4), there exiss Qi satisfying
| (2.16) . Moreovern, for any € > 0, there exists a particular Qg
satisfying (2.16) and '
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l2)(z.0002)] < €llzl? wzez. , (2.29)
Proof: The existence of a g, satisfying (2.16) and

-~ | 2

1a;(2,9..2)] < ellz]]]

is established in [1] or [3]. Therefore, by (2.14), the inequality (2.29)

is also established. =

LEMMA 2.2 - Given g ¢ Lg(n), there exists a unique we W satisfying 12.17)
and the estimate

Hully< S gl | (2.30)

Proof: The bilinear form b(-.,-) satisfies the continuity and stability con-
ditions (2.20)-(2.22) on W x L3(2) and Cg,v> is a bounded Tinear functional
on Li(a). Therefore, the result follows from BabuSka's generalization of the

Lax-Milgram theorem [15]. -

LEMMA 2.3 - Given fe W '(2), q, satisdying (2.16), and W satisfying
(2.17). 14 '

8= v - (M+Dlgll, >0, (2.31)

then Hhere exists ze I and pe Lﬁ(n), satisfying (2.18) and

(2.19) and the estimates

zlly < g [1HE Ty + o+ milgl ) wsaul ]y + Nlwa,l12] (2.32)
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and

el < 2 [ 1Ay + @+ sl 1) zawanl ) + NI zwraud 1],
: |

(2.33)
Proof: We set v=¢geZ in (2.18). Then, since b(z,p) =0 for z e Z,
we have
alz,z,z) =h(z) Vvzel (2.34)
where
a(z,2.z) = 2 (z.2) + a;(z,2.2) + 2 (wtas»2,2)
+ ay(z,wta,,1) (2.35)
and
(2.36)

h(z) = <£,20 - ay(whg,.2) - a1(Whg,.uwtau.c).

To show the existence of a solution

Now, from (2.19), we see that ze Z.
B>0

2z to (2.34) we need only show that (see [3] or [4]) there exists

such that

(2.37)

a(z,2,2) > 811213 vzez

z weakly in Z as m~>«, then

and that if 2z converges to z

(2.38)
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and finally that h(z) 1is a bounded linear functioha1 on Z. Now,

letting ¢ = z in (2.35) yields, using (2.12),

a(2,2,2) = a,(2,2) + ay(z.m+0,.2).
Then, using (2.24), (2.28) and (2.29),

a(z,z,2) > (v - Mlls’Jllo - Niwllq - ez, (2.39)
or, using (2.30),

az,z,2) 2 [v - 0+ Bylgl - enllzld.

Therefore, since € > 0 is arbitrary, (2.37) holds with B given by (2.31).
Note that B > 0O requires-that v be "sufficiently large” or g "“"sufficiently
small". To prove (2.38), we note that the term a,(z,z,z) equals 51(335,2)

. 1 ~ -
since z,z € ZCH (2). The convergence of a;(z,z.,z) to a;(z,z,z) was
established in [3] or [4]. The remaining terms in (2.34), i.e.

a,(2.0) + aylwra,,z,z) + a,(z,urq,.2)

constitute, by (2.24), (2.28) and (2.30) a continuous bilinear form on 7 x 1,
Thus, (2.38) follows. Finally, we have from (2.24), (2.28) and (2.36),

@) < [y + o+ lal ) lwad by + Mwa 1], v ez,

so that h(z) 1is a bounded linear functional on Z. Thus the problem (2.34)
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has a solution z e Z satisfying (2.32).

Now, set v=we W in (2.18). MWe then have, by (2.15),
b(w,p) = {f,u> - a (u,w) - a;(u,u.w) V¥ we M. (2.40)

since [[ully < Ilwll + 1lzll; + |lad]; and fe W (), the right hand
side is, by (2.24), (2.28), Lemmata 2.1 and 2.2, and (2.32), a bounded
linear functional on W. Then, since the bilinear form b(-,-) satisfies

- (2.20)-(2.22), we have that a p exists satisfying (2.40) and the estimate
(2.33).

THEOREM 2.4 - Given fe H'(2), gel2(@) and ge H/%(r) such that
(2.4) and (2.37) are satisfied, thene exists a sofution u € ﬂ?(n)
and p e Lg(n) of {2.3), {2.5) and {2,6) . Moreover, u and p
satisfy the estimates

Hally < 2 Hallg * Haud by + £ {181 + o+ Mg Ll T, + Hadly)

0l + Haud (7] (2.41)

and

pllo < T[1E1y + &+ Mgl lully + wullF]. (2.82)
Y

Proof: The results follow from Lemmata 2.1-2.3. .
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We remark that if g =0, then B =v and B > 0 trivially.. For
g # 0, (2.31) requires that v be sufficiently large compared to l[g]]o.

1

The uniqueness of the solution u e H'(R) and pe Lg(sz) will be

shown directly from (2.3), (2.5) and (2.6).

THEOREM 2.5 - Given f ¢ ﬂ'](n), ge L(Z)(Q) and q € 5_]/2(1') such that
(2.4) and

e=v - 0+ Dol - Mgty - Bl + omilal & Hallg + Ta,l1y)

# N 1allg+ el 1902 > 0 ‘ (2.43)

are salisfied, there exists at most one solution u e ﬂ](n)
and pe Lg(n) of 12.3), 12.5) and (2.6).

Proof: Let (u;.pq) and (u,.p,) be two solutions in ﬂ](n) x Lg(Q) of
(2.3), (2.5) and (2.6). If U = uy - u, and P = Py - Pys We have, from
(2.3), (2.5) and (2.6), that U e H)(a) and

3 (U¥) + ay(uyays¥) = ag{tp00,,0) + B(VP) =0 yye H(a) (2.22)
b(Uw) =0 yve Lia). (2.45)

Choosing ¢ =P in (2.45) and v=Ue ﬂl(s‘z) in (2.44) yields

{
o

a,(U,0) + a,(U,uy,U) + aq(u,,U,U) =

n

P R P
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Then, by (2.12), we have
ao(y_,g) + a](_!sg" ay_) =0
so that by (2.24) and (2.27),

(v - Milgll, - MlulI I < 0.

Thus, using (2.41), if (2.43) holds, U = 0.

Now, with U =0 and u; = uy, (2.44) becomes

_ 1
b(v,P) =0 V¥ ve ﬂO(Q)
and, in particular, since H_Ciﬂl(n),

b(w,P) =0 ¥V we W

Then (2.22) implies that P = 0. -

We note that if g =0 and g = 0, then (2.43) reduces to the well
known uniqueness condition vl NILfll_] > 0. Moreover, for existence we
needed B > 0, while for uniqueness, & > 0 was required. Comparing (2.31)
and (2.43), we see that B > £, so that £ > 0 implies B > 0, but not |
conversely.

The condition for uniqueness, (2.43), requires that f, g, and gq be
"sufficiently small". On the other hand, the condition for existence, (2.31),
réquires only that g be "sufficiently small". If one is willing to accept

"small" g, as one must to prove uniqueness, then the existence proof can be
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simplified. Moreover, it can be modified so that g, need not be divergence
free and therefore g need not have zero mean. Furthermore, gq, need not

satisfy (2.29). Indeed, we replace (2.4), (2.6) and (2.17) by

j gda = J g-ndr, (2.46)
Q T

= g, (2.47)
T

g e H(@), g

and

weE ﬂl(n), blw,p) =<{divg, - g,v> Ve Lg(n), (2.48)

respectively. We replace Lemma 2.1 by the fact that, since g e ﬂ}/z(r),

there exists a q, € tﬂ(ﬂ) such that g,| =g and
r

Hﬂ*'l] = K”S.H]/z,r- (2.49)

Through the use of (2.24) and (2.49), we replace (2.29) by

ay(z.a.2) < Mgl 1y HzHE < w1z Hally - (2.50)

Lemmata 2.2 and 2.3 are replaced by analogous results, which are proven in
much the same way as the lemmata they replace. We acain note that whenever
(2.29) was needed above, it is replaced by (2.50). Then theorems analogous
to Theorems 2.4 and 2.5 follow. Here we simply list the results which ‘

replace Lemma 2.2 and Theorems 2.4 and 2.5.

LEMMA 2.6 - Given ge L2(2) and g, e H'(2) satisfying (2.46) and (2.47),
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there exists a.unique wel satisfying (2.48) and the

estimate
lally < 5 lollg + Heiv 1) < 2 (llally + 7 ladly). (2.m)

THEOREM 2.7 - Given fe W (2), ge L%a) and g e RY2(r) such that
(2.46) and

2 - N /n
BEv =MDl - N+ ZDHally,, > 0 (2.52)
are satisfied, thene exists a solution ue _}1](9) and

P e Lg(n) of (2.3}, (2.5) and (2.6). Moreover, u satisgies
the estimate

/n -
Hully =5 Hallg + (0 + Diigll, , | + b/ (2.53)

whene
= 11211y + ollall )2 Tl + 01 + DIl 72,0

. N{} lall, + (1 + —@)Kllg;lw,r}z | (2.54)
and p satisfies the estimate (2.42).

THEOREM 2.8 - Given fe H''(2), ge L2(a) and qe H/2(r) such that
(2.46) and




=

B>0

'% =B - =
B

‘ane satisgied, thenre exists at most one solution u € E}(n)
and p e LE(2) of (2.3), (2.5) and (2.6).

We remark that if g, is chosen to be divergence free, which is always

possible if g has zero mean over &, then all the terms in (2.51)-(2.55)

involving

i 11ally o0

can be omitted. Further, it is clear from (2.52) that existence is proven

20

(2.55)

for "sufficiently small® g and q and from (2.55) that uniqueness is proven

for "sufficiently smal1* f, g and q. It is also easily shown that unique-

ness implies existence, i.e. that E > 0 implies 8> 0.

The regularity results for the solution of the stationary Navier-Stokes

equations proven in, e.g. [1] or [3], are independent of the particular weak

form of the equations, and thus carry over to our setting.

3. MIXED FINITE ELEMENT APPROXIMATIONS

3.1 - The Approximate Problem

We wish to define a problem which will yield approximate solutions of
(2.3)-(2.6). To this end we choose subspaces yﬁ CIﬁ?(Q) and 52 CZLg(Q).
h h h h

We then seek a u'e V- and p e Sj such that
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a (u", ") +a (W) + b =<y v e D (3.1)
0'— = 1= = = ——= - -0 -
b 4" = ¢y ol e sh (3.2)
Eh = gﬁ on T (3.3)
h_,h 1 h . e s .
where yo =V N ﬂo(ﬁ) and q  1is an approximation to g on T. Since

we are assuming that gﬁ is in the restriction of yh

to the boundary T,

the results below will hold for polygonal domains. However, through the use
of isoparametric elements, it is reasonable to expect that these results can
be extended to regions with curved boundaries. Possible choices for gﬁ are

the interpolant of gq in the restriction of yh

to T or the Lzﬂr)-projection
of g into that boundary space. The first choice requires that q ¢ H]/2+e(r)
for some € > 0, while for the latter choice q ¢ H]/z(r) suffices.

In analogy with (2.15), we write

W= Mgl | (3.4)

where 92 € !h is a function such that 92 = gﬁ on T and where yﬁ
satisfies

we v, b =divdl - g v el sh. (3.5)
We only consider the case where the continuous problem has a unique solution.
Thus, as in that case, we do not need to require

b(gha™ =0 v e Sg
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in order to prove the existence of a solution ta (3.1)-(3.3). Further-
more, we wWill not need to require that 32 satisfy a result analogous
to Lemma 2.1.

The coercivity and continuity conditions (2.20), (2.24), (2.27) and
(2.28) hold on the subspaces. However, the conditions (2.21) and (2.22)

do not imply that similar conditions hold on the subspaces. Therefore,

defining
Zb = {gb € y2 b(gb,wh) =0 v wh € S:}
and
" = (2
we assume that, for Yh’;h > 0,
S TR BN | T T RN e (3.6)
"] =
)
h_.h
P eSo
and
sup bl 0" 2 vl 8, v e P (3.7)
Hl”'_ H]=]
e

A variety of finite element spaces for which (3.6) and (3.7) hold, with Y
and ;h bounded below uniformly in h, have been analyzed in, e.g. [4], [9],

[101, [11] and [12].

We note that, in general, thI Z. A measure of the angle between the

spaces Zh and Z 1is given by




23

0 = sup. inf llg;ghl[]. ] (3.8)
zel'  zel
12" 1=

In genera], 0 <0< 1, which is easily seen by observing that for Zﬁ cz,
© = 0, and that by choosing z =0, o =1.

We are now in a position to prove uniqueness and existence theorems for
the approximate solution gﬁ, ph analogous to Theorems 2.7 and 2.8 for the

continuous problem.

THEOREM 3.1 - Given f e (o), gel@) and e lh such that 32 = &h

on T and
P N iy b
Bh=v-(M+;;)l|g|lo-N(1+ﬁ)ll$lll>0 (3.9)
. g . . h h h h
are satisfied, there exists a solution u eV and p € So

h

of (3.1)-13.3). Moreover, u" and p"' satisfy the estimates

h 1 /n h A

'l < 3= el + O +;§)ll9*l|1+8h/8h (3.10)

and
h hy 2
1o g < [ 1811+ miial 1) 1M1 + w1h 2] (3.11)
Yh
where
1 Ry i
B, = N1y + osmlal | [ 1ol + (1 E)!sgju-,]

h

ri n h 2
NG el + (e D 2, (3.12)




24

THEOREM 3.2 - Given f ¢ ﬂ_-](g), ge LZ(Q) and 92 € y_h such that

h h T

9, =g on and
R R NB,
Ep = By -=— >0 (3.13)
®h

are satisgied, there exists at most one solution gh € yﬁ

and e s! of (3.71-(3.3).

The proofs of these theorems proceed as in the continuous case with the
exception that in the proof of the result analogous to Lemma 2.3, we need
not pass to the limit m-+ =, j.e. we need not prove (2.38).

If 92 is chosen to be "discretely divergence free", i.e. if

b("w™) =0 vl sg, (3.14)

then all terms involving vn in (3.9), (3.10) and (3.12) may be omitted.

On the other hand, if 32 is chosen to be the interpolant, in yﬁ

» of q,,
and g, is chosen to satisfy (2.49), then for certain classes of finite

element spaces

h h
“9*“1 f.'lﬂ*'ﬂxil] +_“9xll]‘§ (]+C)K'lﬂjl]/2,r
so that if g 1is "small", so will be 32. Furthermore, if g is smoother
on the boundary, as it will have to be in order to obtain any degree of
approximation, we have that the above inequality holds for a general finite
element space yﬁ, so that again, q "small" implies "92“ small.

In practice, we compute directly with (3.1)-(3.3) so that we do not




need to explicitly construct g, or 9_2. However, we do need gh,_ which

is defined on T.

3.2 - The ﬂ1 Velocity and L2 Pressure Error Estimates
We define the set jl_h by
_\zh = {gh € !h: gh = _qh on r}.

The main 'goal of this paper is the following result.
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THEOREM 3.3 - Let (2.55) and (3.13) be satisgied s0 that (u,p) and (u",p")

denote the unique sofutioms of (2.3}, (2.5) and (2.6) and (3.7)-

{3.3), nespectively. Then, there exist constants Ci’

i=1,...,4 asuch that

h . - . .
[Hu-u"[1; < ¢4 inf -1 + cp0 inf [1p-pN]
ueV ﬁhssh

and

h . Ah . “h
[Tp-p"I 1, < C3 inf [u-G714 + C4 ;nfhllp-pllo,

a ~

ueV p €S

where © 45 defined by (3.8).

Proof: Let u and gh

" h h h  .h

where we W, w eW, z¢

|=
|~

r

N yields

subtracting (3.2) from (2.6) with v = \ph € So

0

0

be written as in (2.15) and (3.4), respectively,

. . h h ,
» 2 €1, Q94 =9, and Qq,| =4q . Then,
T

(3.15)

(3.16)
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blu-w ") = rblg-aleh v oeh e s, . (3.17)
where we have used b(_z_—ih,wh) = 0. Now, let gh = Q_h + :z_h + 92 where
~h h sh h h _sh

w eW and z e

are arbitrary. Then U e V' and, since

b(z-ih,‘ph) = 0, we have from (3.17)

~ h
( h h

b(a"-w" ") = b+l o™ = b(ue™) v e So

Then,using (2.20) and (3.6),

a4y < T i (3.18)

where g" “is an arbitrary element of V.

We now estimate ||5“-gh||1. Subtracting (3.1) from (2.5) with

_h_yhs
v=yv eV  yields
ao(g-gh,vh) + a](gh,g-gh,vh) + a](g-uh 2U,Y W)+ b(",p-p") =0 ¥ xh 8,22 (3.19)

or, with 4" arbitrary in V" and B arbitrary in S:,

ao(ix_h-gh,v ) + a](uh h— h v ) + a](u —uh,u vh) + b(_v_h,ﬁh-ph)
= ag(@"-uv") + ag (" i1"u ") + o (@ w0 + b -p)
h h
Vv eV, (3.20)

h_-h_h__h _ .h

Now choose v =2-z € 7 S Then, with ¢ arbitrary in Z,

e —— PR




Combining this result with (3.20) produces

ao(z_h'ih ’Zh_-z_h) + a] (:{h_}-h ,E,:Z_h‘zh) + a] (_Llh ,gh_zh ,:Z_h"z_h
= ag(U'-un 22" + 2y (w022
+ ey T IS TEARTA J-L

since " - u" =@ - W+ 2 - 2" using (2.12), (2.20), (2.24), (2.27)

and (2.28) we obtain
<h _h{,2 ~h ~h
(-4 L gl | Nl 1 122 <o 1EM-pl 1, 1E-2"2

+-Qv+m1|grlo+wl|gJ11+N|lgﬁl|1><||QF-HJ|1+||@F-yﬁn|1bnyéﬁ-zﬁli1.

Since é > 0 from (2.55), we have, by taking the infimum over z € Z and

using (3.18),

- —

~h . ~h _h ~h _h
w5 Tp-p 1 ing 11202l /1120-2" ]
Zel -

Then, since

27
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inf {11222l L /N2 b e o,
zel '

we have that

HE"-2"1,4 < %%wmmngmmnﬁmmﬂhu1»§wm@ml
+me|m@M5}. (3.21)
Now, since

-h_h ~h -h_h sh__h
||UU||1<IIUU||1+IIE-EH]:HE’.U_IH+Hﬂ'."i|l]+Hi'_z_ll]

we have, using (3.18) and (3.21) and taking the infimum over ph € Sh and

gﬁ € ih that (3.15) holds. Moreover, using (2.53) and (3.10) yields that
_ /n 1
c]-1+ﬂ+§(wmnm%+ sl + w1+ Dypiglly
NB
g ¢ B )14 )
Yh B B, Yh

and

Cy = /n/E.

We now estimate the error of the pressure approximation. From (3.19)

we have that

b(V.p p)-b(v,p p)-a(uuh,v)

- ay (o) - a, (0" v ey
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h h h

where bh is arbitrary in Sg. Letting v = w € W', we have, using

(2.20), (2.24) and (2.28),
w ~h _h ~h

b B < /A 1l ¢ (ost] gl | o+ Ll 1N L D )]
W
=N

or, taking the supremum over yh £ yﬁ and using (3.7),

~h_h 1 ~h . h
[P -p lloi—r(/ﬁ [p"-pll, + (V+M|lglIO+NHgl|1+NthI|1)H£ -gll])-
"h

Then, using the triangle inequality, (2.53), (3.10) and (3.15), and taking
the infimum over 5h € Sg, yield that (3.16) holds with

C
= N, N /nyip.h ‘ /n
C3 “;—'{V"'(M +;;l‘+?)l|9”0+ N(] + ﬁ)”ﬂ*ll] + NK(.l + ".Y_')Hﬂ”-‘/zJ-
h .
NB
*‘7?2' + gg;
Bh B

and

The condition needed to prove the uniqueness of u, i.e. & > 0, was also

needed in the proof of the error estimates. Also, note that if yﬁ

so that 5h C Zh

is chosen
, so that © = 0, then the velocity error llg;ghl[] uncouples
from the pressure error, i.e. (3.15) is replaced by

int |lu-i"1, if cr.

g_hey‘_h

h
Hu-u'lly < €
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In addition, we note that if g, and gﬂ are chosen to be divergence and

discretely divergence free, respectively, i.e.

blau#) =0 V¥ vell@) and blahe™ =0 v e"esh,

then the terms involving /ﬁ'llgjl1/2,r and /ﬁ'-ll_qmll1 may be omitted
from the definitions of Ci’ i=1,...,4.

It is easily seen, by examining the constants Ci’ i=1,..,4, that
as é -+ 0, these constants become arbitrarily large. Examining E, vihich

is defined by (2.55), it is easily shown that, as a function of v,
E = (v-K1) - (K2v+K3)/(v-K])

where Ki’ i=1,...,3, are non-negative constants independent of v. Then,

since

K3+K]K2

=1 +
(v-K)°

> 0,

oo
< 2>

we see that % decreases with v. Note that for E > 0, we must have v > KT'
We recall that for small %, Ci = O(]/E). If v* denotes the critical value

of v for which % = 0, it can be shown that, for v > v¥

- 1 *
i.e. the constants in the error estimates blow up algebraically as v approaches
the critical value v*. - In particular, it is important to note that the Ci's

do not blow up exponentially in 1/(v-v*), and, on the other hand, they do not
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either.

blow up as 1/(v-v*)]/2

3.3 - Iterative Methods for the Discrete Equations

In this section we examine three iterative methods for the solution of
the discrete equations (3.1)-(3.3). Here we follow closely [4] and
especially [5]. Throughout this section we will denote by (gh,ph) the
exact solution of the discrete equations, and by {gj,pj}, j=0,1,2,...,
the sequence of approximations to (gh,ph) defined by the iterative method.

We first consider Newton's method. ‘Given u, such that u_ - = gb,
the sequence {yj,Pj}, j> 1, is defined by: seek u; € ih, Py € Sg such

that
h h h
ao(Ej V) o+ a4 (Ej’Ej_]’l ) + a](ﬂj_] LR ) + b(l/_stv)

=<ﬁf§ +aﬂ$&P%JP£U Yv eV, (3.22)

blugs#"™) = - Ca"> v 4" e 5. | (3.23)

Note that we require Eo. to satisfy the boundary conditions, but we do not
require that

blu,w") = -<gu"> v oM e sh. (3.24)

—0

Furthermore, no initial pressure Po is required. The following series of
propositions shows that if u_ is sufficiently close to gﬁ, then the

iterates {Ej’pj} are uniquely defined by (3.22) and (3.23), and that these

. . h
iterates converge quadratically to (gh,p ).
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PROPOSITION 3.4 - Let d = /2N and suppose that ||u -u"| |y <d and

u = qh. Then the sequence ¢f iterzzes {u.,p.}, j > 1,
S, -~ 3*7 =

are uniquely defined by (3.22) and (3.23) and llEj'Hbll].i d,

Jj> 1.

Proof: We show that the results are true for j when tney are true for j-1.
By hypothesis, they are true for J =0. To show that (gj,pj) is uniquely
defined, we need only show that the finite dimensional system (3.22) and (3.23)
possesses only the trivial solution when the right hand side§ vanish, i.e.

that the problem of finding U e yg and p e Sg such that

-~ h . h ~ h
3 (U.v) + 2 (Buy 7.v7) + aglyug q,0.v7)

| + b(y_hsb) -

- ~yh
0 Vv eV, (3.25)
b =0 v st (3.26)

= 0. We set xh =u in (3.25) and

=i

has only the solution u = 0 and

0 and
ag(U,u) + ay(U,u; 1,0) + ay(u;_y,0,u) = 0.
Then, using (2.12), (2.24) and (2.27),

(v-M] g} | =Nl Lus_y | 1)1 5 < 0

or

(v-M1gl [ N 1a™ ], =N] | u"u

o"u DNEN < o,
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or, comparing with (3.13),
~ h ~ 1,2
(Eh"NI |u _—j-—'l”'l)' |ul l] < 0.
But, by hypothesis, llgp-gj_1||]'§ éh/zn, so that
A ~ 2
7 Elluld <0

and, since we are assuming that éh > 0, i.e. that the discrete solution
(gﬁ,ph)  is uniquely determined, we have u = 0. Now, with u = 0, (3.25)
yields

roho=y h h
b(v',p) =0 V¥V v eV,

and, in particular, for all yh € yﬁ. Then, using (3.7), we easily have
that p = 0. .

We now show that llgd-gﬁll‘i d. Subtracting (3.1) from (3.22) and
(3.2) from (3.23)

h _h h_ hy_ _,h h ohy L - h
35{u5=u",v) + (v py-pT) = a](g WY ) * ag(uy gaus g v)
h h h _ h
- a](ﬂjs!‘]_] 'V ) - a](y_J_] ’E‘j 'V ) 1) VvV € _\_I_os (3.27)
blugu" WM =0 valesy (3.28)

D ores h _ h b . h
Letting 1 =u;-u eV, and y

= pj-ph € Sg in (3.27) and (3.28), respectively,

and then combining yields, using (2.12),
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h o, h _h O D R
Uy + g (uyuu g ug-uf) 3y (U q-uu q-uthu-uf),

Then, using (2.24) and (2.27),

Mo g 311 ge"T 1 < My o2

or, by the triangle inequality and (3.123Y,

(e MLy a1 M < lu;-u"13,

But, by hypothesis, ng_]-y_h[].l <d = g/aN. Therefore

h 1 hy 2
”Ej‘H H] i) ”E_J'_]"H ”-'

(3.29)
-
or, llﬂjglllid- .
PROPOSITION 3.5 - I Hgo-gh[l] < d, then fon § > 1
h h i
Hug-ut 1y < Hug-u"127453°7, (3.30)
Furthen, i H!O'EhH] =de with 0<e< 1, then fon
i1,
h 2d
Hys-u [ < de . (3.31)

and for some constant C > 0

; |
IIPJ--PhHoi ce?. (3.32)
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Proof: (3.30) and (3.31) follow from (3.29). Subtracting (3.1) frpm (3.22)

and restricting !h = yh € Hh, yields

h  _hy . . (0 h o h- _h h h
b(ﬂ_an'P ) ao(!d u'w) o+ a](Hj-] E.aﬂj_]'ﬁ.sﬂ.)

h _h h h
- (Ej_] LTl ) -y (.lij‘! ’_'»_‘_j--] W) VwoelW.

Then, using (2.24), (2.28) and (3.7),

i ch h hy,2

Yal 1P 11 g < (VM1 gl] )] us-u II1+N[ILU_J-_1-£ 15

h h h h
* 2y q-utly Nty + 2100 Hugea 1]

or, using (3.31),

51 1 o3 j
o1y < 2 [1ae? )2+ 282 e v 2]l a? ]
Yh
i
+ 1 (o [gl] )ee? < ce? .
Y 0

We next consider the modified Newton, or chord method. Given u, such

that u| = gh, the sequence {gj,pj}, J> 1, is defined by: seek u; € 2
h 'L |
o

p: € S such that

i
h h h h
8p(Uyav ) + 2y (ugau,v) + ag(ug,uyuv) + by ;)

' h
=<_f,_\_/_h>"' a1(9_j_1 a!oslh) + 31(!0a9_j_1 slh) - a](‘_".j_] ’t_’.j_] '.‘.’.) v y_h € !2

(3.33)
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h h

blug ™ = g™ v " e s, (3.34)

Once again we require only that Y, satisfy the boundary condition. We

do not require an initial pressure P, Or for u, to satisfy (3.24). The
advantage of this method, with respect to Newton's method or the simple
iterative method scheme defined below, is that the linear system to be solved
at each iteration always involves the same coefficient mafrix. On the other
hand, the chord method is only locally Tinearly convergent. ‘In a manner

entirely analogous to that for Newton's method, we can prove the following

result,

PROPOSITION 3.6 - Let d = £,/2N and suppose that || go-ghlllg /2 and

!olr = gh. Then the sequence of iterates {gj,pj}, i> 1,

are uniquely defined by (3.33) and (3.34) and ‘ng-ﬂ | < 42,
J> 1. Moreoven, if l[goﬁghlh =de/2 with 0<e< 1,

zthen fon j > 1,

i

ng-ghlh < dev'y2

and

h 3+
Ipy-pTi 1y < Cet

Following the discussion at the end of Section 3.2, we note that the
attraction balls for the Newton and chord methods, whose radii are proportional
to Eh’ vanish as v approaches v*. Indeed, then radii are O0(v-v*) as v
approaches v*. ' |

The final scheme we consider is the following simple iteration. Suppose




37

Eh > 0 so that the solution (gh,ph) of the discrete equations is uniquely

defined. Then, given u_e yh
yh

k u.eV
seek u; eV

, the sequence '{gj,pj}, j> 1, is defined by:
and pj € Sh such that

0
h h h _ h h h
ag(yo¥ ) + aglug 1ouy00) +b(vps) =CEV' > ¥ VeV, (3.35)
blugw™ = <g™ Vel esh.  (3.36)

For this scheme, one can prove the following results.

PROPOSITION 3.7 - Let &, > 0 40 that the sofution (",p™ of the discrete
equations 48 uniquely defined. Then, given u, € !ﬁ, the
sequence {gj,pj}, J> 1, 4s uniquely degined by (3.35) and

(3.36). Moreoven, if o 4is a constant such that
_ h
a(V'Mllgllo) = NIIE.II]s
then a< 1 and, for j> 1,
h ' hyy
!IEﬂ'E.lI] A aJIIEO'E.I']-

Proof: The proof follows closely those of [4] and [5] for the homogeneous
stationary Navier-Stokes eduations. We only note that necessarily o< 1

because we have assumed that ¢, = v-MllgIIo-Nllghli] > 0, .

The simpie iterative scheme (3.35) and (3.36) is thus linearly and globally

convergent. It requires the solution of a different matrix problem for each
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iteration. No initial pressure Po is needed, nor does the initiai

velocity U, need to satisfy (3.24) or the boundary condition ug

n
1o

In particular, we may start with the initial condition IR = 0.

4. NUMERICAL EXAMPLES

In this section we present three numerical examples which illustrate
some of the theoretical results of the previous sections. Specifically, we
wish to illustrate the estimates for the errors in the approximate solution
for the'velocity and tﬁe quadratic convergence of the Newton jterates. An
extensive report of the numerous other computational results will be made
elsewhere. The first two examples are artificial, i.e. we define an exact
solutfon and then adjust-the data f, g and g so that the governing equations
(2.1)-(2.3) are satisfied. The third example is a physical flow, namely the
p]éne flow in the neighborhood of a stagnation point. For all three examples
the region @ 1is the unit square {0 < x<1,0<y < 1}.

The pair of finite element spaces which is used in the examples is defined
as follows. We subdivide the region @ into quadrilaterals and then divide
each quadrilateral into two triangles by drawing a diagonal. For the velocity
space yﬁ we choose vector valued functions whose components are continuous
piecewise linear functions over the imiangzeA. For the pressure space, we
first Tet S" consist of piecewise constant functions over the gquadnilaterals.
We then constrain the functions in Sh to have zero mean over @. In addition,
on a regular or graded grid, a second spurious sinéu]ar mode must be eliminated
from Sh, while on an irregular grid, there is a spurious nonsingujar mode
which must be eliminated. ‘See [10] and [127 for details. Then the space Sg

in which we seek the approximate pressure is the space Sh with the above two
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constraints imposed. In actual computations, neither constraint néed be
eXp]icitly imposed on Sh beforehand, but rather they are imposed a posterioni
on the computed pressure by a simple post processing procedure. The finite
e]emeht pair thus chosgn has been shown to be stable, i.e. that (3.6) and (3.7)
hold, 6n regular grids [10] and on general grids [12]. Then, according to the

results of the previous section, we expect that if uce ﬂ?(n) and pe Hl(n),

ll'u-ahII]:Ch and Ilg-ghllo:Chz, (4.1)
where. h f§ a measure of the grid size;

For each example we divide the unit square @ fnto smaller squares of
side h. We report the L?(Q) and ﬂ?(n) velocity errors on pairs of grids,
and for‘eachrpair, the rate of convergence of the approximate solutions. These
rates are computed by comparing the errors on tWo grids. Specifically, we use

the formuia ‘ )

rate = 1n(61/ez)/1n(h]/h2) (4.2)

where’ €5 denotes the errof on the grid hi‘ In addition, we give some'
examples reporting on the;distance,;measured in the ﬂ?(g)-norm, between the
last Newton iterate and the preceeding Newton iterates. We note that for all
the computations, we first computed a few simple iterates, usually two or three,
"before switching to the Newtdn iteration. This enabled us to start the compu-
tation with an arbitrary initial velocity vector, e.g. the zero vector.

For all three examples the exact solution (u,p) was known. The compu-

tations were carried out-with the choice v =1 with gh defined to be the

interpolant of the exact solution u restrictedlto the boundary T of Q.
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The norms of the error (gfgh) were computed using high order quadrature

rules.

The first example, for which f #0 and g # 0 but g =0, has the

exact solution

zsin % sin 2my

x2(1-x)sin my

cos mx(1 + y(y2-4))

o
]

and illustrates the effects of an inhomogeneity in the continuity equation.
The second example, for which f#0, g# 0 and q # 0, has the exact

solution

\Aeky COS AX

ls 1n[(1+x)2 + y21)

C(cos vx)(1-4y+y3)

h=]
]

where B, C and ) are constants which were chosen to be .1, .1 and -1

respectively in the computations reported. A is obtained from the expression

A - 2:8
(e1—1)(1-cos A)

('ln(S) ) % In(2) + arctan(2) - %)

which arises from enforcing (2.4). The third example is that of plane flow in the
neighborhood of a stagnation point, i.e. Heimenz flow. This flow, which is

defined for -® < x < x and y > 0, has the exact solution [16]




’ x¢'(n)
u =
-4(n)

where n = y//v and ¢(n) 1is the solution of the boundary value problem

2iy=0

¢lll +¢“¢ _¢
$(0) =4'(0) =0 and ¢'(») = 1.

For this exaﬁxp]e, f=0 and g=0 but q#0.
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TABLE I

Computational Results for Example 1

42

Grid Size

L?-Error

L"-Rate

tﬂ-Error kﬂ-Rate

H!-Distance

of Newton
Iterates

1/5

.4399 (-1)

.8152

.9623 (-2)
.3948 (-4)
.3685 (-11)

3~

.152 (-1)

1.933 .4090 .995

.1548 (-1)
.1089 (-2)
.7512 (-9)
L4617 (-12)

o

.3107 (-1)

.6792

L1261 (-1)
4167 (-2)
.3129 (-7)
1316 (-12)

-
™~

.8047 (-2)

1.949 .3412 .993

.1619 (-1)
.5575 (-3)
.9313 (-10)
.2059 (-11)

|

.2308 (-1)

.5829

L1326 (-1)
.5662 (-4)
L9191 (-11)

==

.5934 (-2)

1.960 .2926 .994

.1663 (-1)
.3660 (-3)
.9326 (-10)
.2456 (-11)




TABLE 11

Computational Results for Example 2

43

Grid Size

L?-Error

L -Rate

ﬂ]-Err‘or

ﬂ?-Disfance
of Newton
Iterates

1/5

.1906 (-3)

.6039 (-2)

.2580
.6363 (-3)
.6454 (-9)
.4083 (-13)

1/10

.5022 (-4)

1.925

.3028 (-2)

.996

.3921

.5213 (-3)
.2790 (-9)
.2353 (-12)

1/6

.1452 (-3)

.5032 (-2)

.2896
.6659 (-3)

7495 (-9)

.9605 (-13)

1/12

.3454 (-4)

- 2.072

.2530 (-2)

.992

.4345
.4733 (-3)
.2282 (-9)
.1758 (-12)

1/7

.1010 (-3)

.4334 (-2)

.3182

.6580 (-3)
.4913 (-9)
.4241 (-13)

1714

.2579 (-4)

1.969

.2158 (-2)

1.006

.4732
.2477 (-3)
.1250 (-9)

.3396 (-12)




CTABLE III

Computational Results for Example 3

44

Grid Size

L?-Error L™ -Rate ﬂ?-Error H' -Rate

E}-Distance
of Newton
Iterates

1/5

.1804 (-2) .5001 (-1)

.1698 (-1)
.3498 (-6)
.1655 (-12)

110

.4573 (-3) 1.98 .2531 (-1) .98

.8707 (-2)
.7857 (-2)
.2553 (-7)
1429 (-11)

. 1/6

.1259 (-2) .4244 (-1)

.1038 (-1)
.9765 (-2)
.1433 (-6)
2742 (-12)

1/12

.3128 (-3) - 2.01 211 (-1) 1.01

.7452 (-2)
.8445 (-2)
.5028 (-2)
.6624 (-2)
.2783 (-7)
.7931 (-12)
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